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Introduction

» Existing study shows that common stochastic optimizers prefer flatter
minimizers of the training loss, and thus flatness implies generalization.

» This paper critically examines this explanation.
» Through theoretical and empirical investigation, they identify the following
three scenarios for two-layer RelLU networks:
(1) Flatness provably implies generalization.

(2) There exist non-generalizing flattest models and sharpness minimization
algorithms fail to generalize.

(3) There exist non-generalizing flattest models, but sharpness minimization
algorithms still generalize.



Setup




» Data distribution

e 1, : sampled uniformly from the hypercube {—1,1}¢fori=1,...,n
® yi = mi[l]ai[2],
where z;[j] be the value of the j-th coordinate of vector ;.
e let (x4,y:) ii5173,(0r fori=1,...,n
» Architectures
® 2-MLP-No-Bias : f5°b"®(z) = Warelu(Wiz) with 8 = (W1, Wa)
® 2-MLP-Bias : f2"**(x) = Warelu(Wiz + b1) with @ = (W1, by, Wa)

® 2-MLP-Sim-LN : f5'™ (z) = Ws max{Hrfelﬁf(wwjlfjfblfmw} where € is a sufficiently
small positive constant




» Loss

® L(0) = 1 X, (folai) —ui)®

» Sharpness

® Using Tr (V*L(6)) to measure how sharp the loss is at 6

» Interpolating Model

® A model fy interpolates the dataset {(z;,v:)}iz, if and only if Vi, fo(z:) = vs.



Three Scenario



Scenario I: All Flattest Models Generalize

» Scenario |

Theorem (1.1)

For any 6 € (0,1) and input dimension d, for n = Q (dlog (£)), with probability

at least 1 — ¢ over the random draw of training set {(zs,y:)};_, from P, let

. 2
L) & 157 (fg"b’“S (z:) — yi) be the training loss for 2-MLP-No-Bias, it
holds that for all 6* € arg ming,g)=o Tr (V>L(0)), we have that

Ez,y~Pior {(ftggbias () — y)ﬂ -0 (% og (%>)

» This shows that for Py, flat models can generalize under almost linear sample
complexity with respect to the input dimension.



Scenario I: All Flattest Models Generalize

» SAM empirically finds the flattest model that generalizes.
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Figure 1: Scenario I. Training a 2-layer MLP with RelLU activation without bias using gradient
descent with weight decay and SAM on Pxor With batch size 1, dimension d = 30 and
training set size n = 100.



Scenario Il: Both Flattest Generalizing and Non-generalizing Models Exist, and

SAM Finds the Latter

» Scenario Il

Definition (2.1)

(Set of extreme points). A finite set S c R% is a set of extreme points if and only
if forany z € S, z is a vertex of the convex hull of S.

Definition (2.2)
(Memorizing Solutions) A D-layer network is a memorizing solution for a training
dataset if (1) the network interpolates the training dataset, and (2) for any depth
k € [D — 1], there is an injection from the training data to the neurons on depth
k, such that the activations in layer k for each input data is a one-hot vector with
the non-zero entry being the corresponding neuron.




Scenario Il: Both Flattest Generalizing and Non-generalizing Models Exist, and

SAM Finds the Latter

Theorem (2.1)

If the input data points {z;} of the training set form a set of extreme points
(Definition 2.1), then there exists a width-n 2-MLP-Bias that is a memorizing
solution (Definition 2.2) for the training dataset and has minimal sharpness over
all the interpolating solutions.




Scenario Il: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Latter

Proposition (2.1)

For data distribution Pxor, for any number of samples n, there exists a width-n
2-MLP-Bias that memorizes the training set as in Theorem 2.1, reaches minimal
sharpness over all the interpolating models and has generalization error

max {1 —n/2% 0} measured by zero one error.

Proposition (2.2)

For data distribution Pxor , for any number of samples n, there exists a width-n
2-MLP-Bias that interpolates the training dataset, reaches minimal sharpness
over all the interpolating models, and has zero generalization error measured by

Zero one error.

» Prop. (21) and (2.2) show that both flattest generalizing and non-generalizing
models with architecture 2-MLP-Bias exist.



Scenario II: Both Flattest Generalizing and Non-generalizing Models Exist, and

SAM Finds the Latter

» SAM empirically finds the non-generalizing solutions.
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Figure 2: Scenario Il. Training a 2-layer MLP with ReLU activation with Bias using gradient
descent with weight decay and SAM on Pxor With batch size 1, dimension d = 30 and
training set size n = 100.



Scenario Il: Both Flattest Generalizing and Non-generalizing Models Exist, and

SAM Finds the Former

» Scenario Il

Theorem (3.1)

If the input data points {z;} of the training set form a set of extreme points
(Definition 2.1), for sufficiently small €, then there exists a width-n 2-MLP-Sim-LN
with hyperparameter e that is a memorizing solution (Definition 2.2) for the
training dataset and has minimal sharpness over all the interpolating solutions.




Scenario Il: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Former

Proposition (3.1)

For data distribution Pxor, for sufficiently small €, for any number of samples n,
there exists a width-n 2-MLP-Sim-LN with hyperparameter ¢ that memorizes the
training set as in Theorem 3.1, reaches minimal sharpness over all the
interpolating models and has generalization error max {1 —n/2%, 0} measured
by zero one error.

Proposition (3.2)

For data distribution Pxor, for sufficiently small ¢, for any number of samples n,
there exists a width-n 2-MLP-Sim-LN with hyper parameter e that interpolates
the training dataset, reaches minimal sharpness over all the interpolating
models, and has zero generalization error measured by zero one error.

» Prop. (31) and (3.2) show that both flattest generalizing and non-generalizing
models with architecture 2-MLP-Sim-LN exist.



Scenario I11: Both Flattest Generalizing and Non-generalizing Models Exist, and

SAM Finds the Former

» SAM empirically finds generalizing models.
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Figure 3: : Scenario Ill. Training two-layer ReLU networks with simplified LayerNorm on data
distribution Pxor With dimension d = 30 and sample complexity n = 100 using SAM with
batch size 1.



Conclusion




Conclusion

» Authors present theoretical and empirical evidence for whether sharpness
minimization implies generalization subtly depends on the choice of architectures
and data distributions.

Architecture All Flaltesl‘Minimizers Sharpr}ess Minimiza‘lion
Generalize Well. Algorithms Generalize.

2-layer w/o Bias v (Theorem 1.1) v

2-layer w/ Bias X (Theorem 2.1) X

2-layer w/ simplified LayerNorm X (Theorem 3.1) v

Figure 4: Summary of results

» Limitations

® The setup is too simplistic. No noise is considered in the label y; = z;[1]z;[2].

® Results only cover a small subset of existing architectures.



End



	Introduction
	Setup
	Three Scenario
	 Scenario I : All Flattest Models Generalize
	 Scenario II : Both Flattest Generalizing and Non-generalizing Models Exist, and SAM Finds the Latter
	 Scenario III : Both Flattest Generalizing and Non-generalizing Models Exist, and SAM Finds the Former

	Conclusion

