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Introduction

▶ Existing study shows that common stochastic optimizers prefer flatter
minimizers of the training loss, and thus flatness implies generalization.

▶ This paper critically examines this explanation.

▶ Through theoretical and empirical investigation, they identify the following
three scenarios for two-layer ReLU networks:
(1) Flatness provably implies generalization.
(2) There exist non-generalizing flattest models and sharpness minimization

algorithms fail to generalize.
(3) There exist non-generalizing flattest models, but sharpness minimization

algorithms still generalize.
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Setup

▶ Data distribution

• xi : sampled uniformly from the hypercube {−1, 1}d for i = 1, . . . , n

• yi = xi[1]xi[2],
where xi[j] be the value of the j-th coordinate of vector xi.

• Let (xi, yi)
iid∼ Pxor for i = 1, . . . , n

▶ Architectures

• 2-MLP-No-Bias : fnobias
θ (x) = W2relu(W1x) with θ = (W1,W2)

• 2-MLP-Bias : f bias
θ (x) = W2relu(W1x+ b1) with θ = (W1, b1,W2)

• 2-MLP-Sim-LN : fsln
θ (x) = W2

relu(W1x+b1)
max{||relu(W1x+b1)||2,ϵ}

where ϵ is a sufficiently
small positive constant



Setup

▶ Loss

• L(θ) = 1
n

∑n
i=1 (fθ(xi)− yi)

2

▶ Sharpness

• Using Tr
(
∇2L(θ)

)
to measure how sharp the loss is at θ

▶ Interpolating Model

• A model fθ interpolates the dataset {(xi, yi)}ni=1 if and only if ∀i, fθ(xi) = yi.



Three Scenario



Scenario I: All Flattest Models Generalize

▶ Scenario I

Theorem (1.1)
For any δ ∈ (0, 1) and input dimension d, for n = Ω

(
d log

(
d
δ

))
, with probability

at least 1− δ over the random draw of training set {(xi, yi)}ni=1 from Pn
xor, let

L(θ) ≜ 1
n

∑n
i=1

(
fnobiasθ (xi)− yi

)2

be the training loss for 2-MLP-No-Bias, it
holds that for all θ∗ ∈ argminL(θ)=0 Tr

(
∇2L(θ)

)
, we have that

Ex,y∼Pxor

[(
fnobiasθ∗ (x)− y

)2
]
= O

(
d

n
· log

(
d

n

))

▶ This shows that for Pxor, flat models can generalize under almost linear sample
complexity with respect to the input dimension.



Scenario I: All Flattest Models Generalize

▶ SAM empirically finds the flattest model that generalizes.

(a) Baseline (b) 1-SAM

Figure 1: Scenario I. Training a 2-layer MLP with ReLU activation without bias using gradient
descent with weight decay and SAM on Pxor with batch size 1, dimension d = 30 and
training set size n = 100.



Scenario II: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Latter

▶ Scenario II

Definition (2.1)
(Set of extreme points). A finite set S ⊂ Rd is a set of extreme points if and only
if for any x ∈ S, x is a vertex of the convex hull of S.

Definition (2.2)
(Memorizing Solutions) A D-layer network is a memorizing solution for a training
dataset if (1) the network interpolates the training dataset, and (2) for any depth
k ∈ [D − 1], there is an injection from the training data to the neurons on depth
k, such that the activations in layer k for each input data is a one-hot vector with
the non-zero entry being the corresponding neuron.



Scenario II: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Latter

Theorem (2.1)
If the input data points {xi} of the training set form a set of extreme points
(Definition 2.1), then there exists a width-n 2-MLP-Bias that is a memorizing
solution (Definition 2.2) for the training dataset and has minimal sharpness over
all the interpolating solutions.



Scenario II: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Latter

Proposition (2.1)
For data distribution Pxor , for any number of samples n, there exists a width-n
2-MLP-Bias that memorizes the training set as in Theorem 2.1, reaches minimal
sharpness over all the interpolating models and has generalization error
max

{
1− n/2d, 0

}
measured by zero one error.

Proposition (2.2)
For data distribution Pxor, , for any number of samples n, there exists a width-n
2-MLP-Bias that interpolates the training dataset, reaches minimal sharpness
over all the interpolating models, and has zero generalization error measured by
zero one error.

▶ Prop. (2.1) and (2.2) show that both flattest generalizing and non-generalizing
models with architecture 2-MLP-Bias exist.



Scenario II: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Latter

▶ SAM empirically finds the non-generalizing solutions.

(a) Baseline (b) 1-SAM

Figure 2: Scenario II. Training a 2-layer MLP with ReLU activation with Bias using gradient
descent with weight decay and SAM on Pxor with batch size 1, dimension d = 30 and
training set size n = 100.



Scenario III: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Former

▶ Scenario III

Theorem (3.1)
If the input data points {xi} of the training set form a set of extreme points
(Definition 2.1), for sufficiently small ϵ, then there exists a width-n 2-MLP-Sim-LN
with hyperparameter ϵ that is a memorizing solution (Definition 2.2) for the
training dataset and has minimal sharpness over all the interpolating solutions.



Scenario III: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Former

Proposition (3.1)
For data distribution Pxor , for sufficiently small ϵ, for any number of samples n,
there exists a width-n 2-MLP-Sim-LN with hyperparameter ϵ that memorizes the
training set as in Theorem 3.1, reaches minimal sharpness over all the
interpolating models and has generalization error max

{
1− n/2d, 0

}
measured

by zero one error.

Proposition (3.2)
For data distribution Pxor , for sufficiently small ϵ, for any number of samples n,
there exists a width-n 2-MLP-Sim-LN with hyper parameter ϵ that interpolates
the training dataset, reaches minimal sharpness over all the interpolating
models, and has zero generalization error measured by zero one error.

▶ Prop. (3.1) and (3.2) show that both flattest generalizing and non-generalizing
models with architecture 2-MLP-Sim-LN exist.



Scenario III: Both Flattest Generalizing and Non-generalizing Models Exist, and
SAM Finds the Former

▶ SAM empirically finds generalizing models.

(a) Baseline (b) 1-SAM

Figure 3: : Scenario III. Training two-layer ReLU networks with simplified LayerNorm on data
distribution Pxor with dimension d = 30 and sample complexity n = 100 using SAM with
batch size 1.



Conclusion



Conclusion

▶ Authors present theoretical and empirical evidence for whether sharpness
minimization implies generalization subtly depends on the choice of architectures
and data distributions.

Figure 4: Summary of results

▶ Limitations

• The setup is too simplistic. No noise is considered in the label yi = xi[1]xi[2].
• Results only cover a small subset of existing architectures.
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